Quantized Rank R Matrices

نویسنده

  • HANS PLESNER JAKOBSEN
چکیده

First some old as well as new results about P.I. algebras, Ore extensions, and degrees are presented. Then quantized n × r matrices as well as certain quantized factor algebras M q (n) of Mq(n) are analyzed. For r = 1, . . . , n − 1, M q (n) is the quantized function algebra of rank r matrices obtained by working modulo the ideal generated by all (r+1)×(r+1) quantum subdeterminants and a certain localization of this algebra is proved to be isomorphic to a more manageable one. In all cases, the quantum parameter is a primitive mth roots of unity. The degrees and centers of the algebras are determined when m is a prime and the general structure is obtained for arbitrary m.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 3 Se p 19 99 QUANTIZED RANK R MATRICES

First some old as well as new results about P.I. algebras, Ore extensions, and degrees are presented. Then quantized n × r matrices as well as quantized factor algebras of M q (n) are analyzed. The latter are the quantized function algebra of rank r matrices obtained by working modulo the ideal generated by all (r + 1) × (r + 1) quantum subdeterminants and a certain localization of this algebra...

متن کامل

A Class of Quadratic Matrix Algebras Arising from the Quantized Enveloping Algebra

A natural family of quantized matrix algebras is introduced. It includes the two best studied such. Located inside Uq(A2n−1), it consists of quadratic algebras with the same Hilbert series as polynomials in n variables. We discuss their general properties and investigate some members of the family in great detail with respect to associated varieties, degrees, centers, and symplectic leaves. Fin...

متن کامل

A Class of Quadratic Matrix Algebras

A natural family of quantized matrix algebras is introduced. It includes the two best studied such. Located inside U q (A 2n?1), it consists of quadratic algebras with the same Hilbert series as polynomials in n 2 variables. We discuss their general properties and investigate some members of the family in great detail with respect to associated varieties, degrees, centers, and symplectic leaves...

متن کامل

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

متن کامل

Some rank equalities for finitely many tripotent matrices

‎A rank equality is established for the sum of finitely many tripotent matrices via elementary block matrix operations‎. ‎Moreover‎, ‎by using this equality and Theorems 8 and 10 in [Chen M‎. ‎and et al‎. ‎On the open problem related to rank equalities for the sum of finitely many idempotent matrices and its applications‎, ‎The Scientific World Journal 2014 (2014)‎, ‎Article ID 702413‎, ‎7 page...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999